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Abstract: 

 H.E.Bell and G.Mason[1] proved that if D is a derivation on left near ring N satisfying 

D(N) ⊆ Z or [D(x),D(y)]=0 for all x,y ϵ N then (N,+) is abelian. In [2], Bell and kappe 

proved that if d is a derivation of semiprime ring R which is either an endomorphism or anti-

endomorphism then d=0. Argafi genaralized this result for a semiprime near ring in [3].       

In this paper, we prove that (N,+) is abelian  if d(x+y-x-y)=0 and if d+d is additive on I. 
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Introduction: 

 An additive map d:N→N is a derivation if d(xy)=xd(y)+d(x)y for all x,yϵ N or 
equivalently that d(xy)=d(x)y+x d(y) for all x,yϵ N. 
 A set N together two binary operations ‘+’ and ‘.’ is called (left) nearring. If 

(i) N is a group (not necessarily abelian) under addition. 

(ii) Multiplication is associative (so N is a semigroup under multiplication) 

(iii) Multiplication distributives over addition on the left for any x,y,z in N, it holds  that 

x.(y+z)=x.y+x.z. 

  A Nearring N is said to be prime if xNy={0} for n,yϵ N implies x=0. A non-empty 

subset I of N will be called a semi group ideal if IN⊆I and NI⊆I, if d is a derivation of a 

semigroup ring R which is either an endomorphism or anti-endomorphism, then d=0. 

 An additive mapping f:N→N is called a (α, β)-derivation if there exist functions 

α,β:N→N such that d(xy)=f(x)α(y)+β(x) f(y) for all x,yϵN. An additive mapping d:N→N is 
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called a two –sided α-derivation if d is an (α,1)-derivation as well as (1,α)-derivation. For 

α=1, a two-sided α-derivation. 

Preliminaries: 

Lemma 1: Let N be a prime nearring and I a nonzero semigroup ideal of N. If u+v=v+u for 

all u,vϵ I, then (N,+) is abelian. 

Proof: By the hypothesis, we have ux+uy=uy+ux for all uϵI and x,y ϵ N 

Then we get u(x+y-x-y)=0 for all  uϵ I and  x,yϵ N. 

It means that   I( x+y-x-y)=NI(x-y-x-y)=0. 

Since I is a nonzero semigroup ideal we have x+y-x-y=0 for all x,y ϵ N by the primeness of 

N. 

Thus (N,+) is abelian. 

Lemma 2: Let N be a left nearring, d a (α,1)-derivation of N and I a multiplicative 

semigroup of N  which contains 0. If d acts as an anti-homomorphism on I and α(0)=0,then  

0x=0 for all xϵ I. 

Proof: since x0=0 for all xϵI and d acts as an anti-homomorphism on I it is clear that 0d(x)=0 

for all xϵI.  

Taking 0x instead of x ,one can obtain d(x)α(0)+0x=0 for all xϵI. 

Thus we have 0x=0 for all xϵI. 

Lemma 3:  Let N be a nearring and be a multiplicative sub semigroup of N. If d  is a two-

sided α-derivation of N such that  α(xy)=α(x)α(y) for all x,yϵ I then (d(x)α(y)+xd(y))n = 

d(x)α(y)n+xd(y)n for all n,x,yϵ I. Further-more, if α(I)=I, then(d(x)y+α(x)d(y))n= d(x)yn +  

α(x)d(y)n for all n,x. 

Lemma 4: Let N be a prime nearring and I a nonzero semigroup ideal of N. Let d be a 

nonzero (α,1)-derivation on N such that α(xy)=α(x)α(y) for all x,yϵ I. If xϵ N and d(I)x={0}, 

then x=0. 

Proof: Assume that d(I)x=0. 

Then d(uy)x=0 for all yϵ N,uϵ I. 

Hence 0=(d(u)α(y)+ud(y))x=ud(y)x for all yϵ NJ,uϵ I 

Since I is a nonzero semigroup ideal and d is non-zero, it is clear that x=0 by the primeness of 

N. 
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Lemma 5: Let N be a prime nearring and I a non-zero semigroup ideal of N and d a nonzero 

(α,1)-derivation on N. If d(x+y-x-y)=0for all x,yϵ  I,then  d(z)(x+y-x-y)=0 for all x,y,zϵ  I. 

Proof: Assume that d(x+y-x-y) =0for all x,yϵ I. 

Let us take yz and xz instead of y and x, where zϵ I respectively. 

Then  

 0= d(z(x+y-x-y)) 

   = α(z)d(x+y-x-y)+d(z)(x+y-x-y) 

   = d(z)(x+y-x-y)  for all x,y,z ϵ I.                                                                                                                          

Lemma 6: Let N be a nearring and I be a multiplicative sub semigroup of N. Let d be a (α,1)-

derivation of N such that α(xy)=α(x)α(y) for all x,y ϵ I and α(I)=I 

(i) If d acts as a homomorphism on I, then 

x d(y)d(y) = xyd(y) = xd(y)α(y) for all x,yϵ  I. 

(ii) If d acts as an anti-homomorphism on I, then  

xd(y)d(y)= xyd(y) = d(y)xα(y)  for all x,yϵ I. 

Proof: (i) Let d acts as a homomorphism on I. Then 

D(yx)=d(y)α(x)++yd(x)=d(y)d(x) for all x,yϵ I        (1) 

Substituting xy for x in (1), we have 

d(y)α(xy)+y d(xy)=d(y)d(xy)=d(xy)d(y) for all x,yϵ  I       (2) 

By lemma (3), we have  

d(y)d(xy)=d(y)d(x)α(y)+d(y)xd(y)=d(yx)α(y)+d(y)xd(y)  

using this relation  in (2) ,we get  

xyd(y)=xd(y)d(y) 

Similarly, taking xy instead of y in (1), we obtain 

d(yx)=d(xy)α(x)+xyd(x)=d(xy)d(x) for all x,yϵ I        (3) 

on the  other hand       

d(xy)d(x)=(d(x)α(y)+xd(y))d(x)=d(x)α(y)d(x)+xd(y)d(x)=d(x)α(y)d(x)+xd(yx) 

using this relation in (3), we get 

d(xy)α(x)=d(x)d(y)α(x)=d(x)α(x)d(y) 

since α(I)=I it is clear that d(x)wd(y)=d(x)wα(y) for all x,y,wϵ  I 

(ii) Since d acts as an anti-homomorphism on I, we have 

d(yx)=d(y)α(x)+yd(x)=d(x)d(y) for all x,yϵ  I                 (4) 

taking yx for y in (4) ,we get 
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d(yx)α(x)+yxd(x) = d(x)d(yx) 

         = d(x)(d(y)α(X)+yd(x)) 

        = d(x)d(y)α(x)+d(x)yd(x) 

        = d(xy)α(x)+d(x)yd(x) for all x,yϵ I 

From this relation we get d(yx)α(x)=d(xy)α(x). 

Since α(I)=I we get 

d(x)α(x)y=d(x)yd(x) for all x,y ϵ I. 

Similarly, taking yx instead of x in (4), one can prove the relation 

xd(y)d(y)=xyd(y) . 

Main results: 

Theorem 1: Let N be a semiprime nearring and I be a subset of N such that 0ϵ  I and IN⊆ I. 

Let d be a two sided α-derivation on N such that α(I)=I and α(xy)=α(x)α(y) for all x,y ϵ I 

(i) If d acts as a homomorphism  on I ,then d(I)={0} 

(ii) If d acts as an anti-homomorphism on I and α(0)=0,then d( I )={0}  

Proof: (i) Suppose that d acts as a homomorphism on I. By lemma(6), we have  

xd(y)d(y)=xd(y)α(y) for all x,y ϵ I                            (5) 

by multiplying left side of (5) with d(z), where zϵ I, and using the hypothesis that  d acts as a 

homomorphism on  I together with lemma(3) ,we obtain   

zd(y)xd(y)=0 for all x,y,z ϵ  I 

Taking xn instead of x, where nϵ N, we get  

zd(y)xnd(y)=0 for all x,y,z ϵ I  and  nϵ N 

In particular, xd(y)xNd(y)={0}.  

By the semiprimeness of N we conclude xd(y) = 0. 

Since α (I) =I, it is clear that   

α(x)d(y)=0 for all x,yϵ I          (6) 

Substituting yn for y in (6), and right multiplying (6) by d(z),where  zϵ  I ,we get  

α(x)nd(y)d(z)+d(x)α(n)α(y)d(z)=0. 

Since the second summand is zero by (6) we get   

0 = α(x)nd(y)d(z) = α(x)nd(yz) = α(x)nd(y)α(z)+α(x)nyd(z), 

that is xnyd(z)=0 for all x,y,z ϵ I ,nϵ N. 

Since N is semiprime, we have  

yd(z)=0 for all y,zϵ I           (7) 
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Combining (6) and (7) shows that  

d(yz)=0 for all y,zϵ I. 

In particular, d(xnx)=0 for all  xϵ I,nϵ n; and  since d acts as a homomorphism  on I ,we have  

0=d(xn)d(x)=d(x)nd(x)+α(x)d(n)d(x) 

Since α (I) = I, the second summand is zero by (7) we have  

 d(x)=0 for all xϵ I 

(ii) Now assume that d acts as an anti-homomorphism on I.  

Note that 0a=0 for all aϵ I by lemma (2) 

According to lemma (6), we have 

xyd(y) = xd(y)d(y) for all x,y ϵ  I        (8) 

d(y)α(y)x = xd(y)d(y) for all x,yϵ  I                            (9) 

Replacing x by xd(y) in (8) and using lemma (6), we get 

xd(y)yd(y) = d(Y)xd(Y2)  

       = d(y)x(d(y)α(y)+yd(y)) 

       = d(y)xd(y)α(y)+d(y)xyd(y)  

Hence  xd(y)yd(y) = d(y)xd(y)α(y)+d(y)xyd(y)                (10)  

Substituting xy for n in (8) we have 

Xy2 d(y)=d(y)xy d(y) for all x,yϵ I                            (11) 

Left- multiplying (8) by α(y), we obtain 

α(y)xyd (y) = α(y) d(y) nd (y) for all x,yϵ I                           (12) 

Replacing x by y in (8) we get  

y2d (y) =d(y) yd (y)  

and right-multiplying this relation by n, we have 

Y2 d (y) x =d(y) y d(y) x for all x,yϵ  I                            (13) 

Using (11), (12) and (13) in (10) we obtains 

x yd(y)α(y) = 0. 

In particular, y n y d (y) α (y) = 0, Where nϵ N. 

Hence y d (y) α (y) N y d (y) α (y) ={0}. 

By the semiprimeness    

Nyd (y) α (y) = o for all n, yϵ I                 (14) 

According to (12), we get α (y) d (y) n d (y) = 0 

Using this relation in (9), we have 

D (y) α (y) x α (y) = 0 for all x,yϵ  I                  (15) 
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Replacing n by x n d (y) in 15, we have 

D(y)α(y)xd (y)α(y) = d (y) α (y) x n d (y) α (y) x = 0 for all x,yϵ I, nϵ  N. 

 Hence    D (y) α (y) x = 0, for all x,yϵ  I                          (16) 

Using (16) in(9), we obtain that   

 d (y) x d (y) = 0, 

 and so we have  

d (y) x n d (y) x=0 for all x, yϵ I ,nϵ N. 

Hence xd (y) = 0 for all x, yϵ I                   (17) 

Therefore x d (z) d (yn) x = 0 for all x,y,zϵ I, nϵ N. 

Thus 0 = x d (z) (d(y) n+ α (y) d (n) ) x = x d (z) d (y) α (y) d (n) x for all x,y,zϵ I , nϵ N. 

Since α (I) = I the second summand is zero by (17). 

Hence x d (z) d (y) N x = {0} and so 

x d (z) d (y) Nx d(z) d(y) = {0}.By the semi primeness of N we get  

0 = x d (z) d (y) = xd (yz). 

Therefore 0 = x d (y) z +x α (y) d (z) = x α (y) d (z). 

In particular 0 = α (y) d (z) n α (y) d (z). 

Hence 0 = α (y) d (z). 

Recalling (17), we now have 0 = d (xy) for all x,yϵ I. 

So d (xxn) = 0 for all xϵ I,nϵ N.  

Thus  

0 = d(xn) d (x) = (d (x) n + α (x) d (n)) d (x)nd(x) + α(x)d(n)d (x) 

   = d (x) n d (x) + α (x) d(xn). 

Since the second summand is zero, we get d (x) n d (x) = 0. 

Therefore d (x) = 0 for all xϵ I. 

Corollary 1: Let N be a semi prime nearring and d a two sided α – derivation of N such that 

α is onto and α (xy) = α (x) α (y) for all x,yϵ N. 

(i) If d acts as a homomorphison on N , then d  = 0 

(ii) If d acts as an anti homomorphison on N such that α (0) = 0 , then d = 0 .                                                                                                

Corollary 2: Let N be a prime nearring and I a nonzero subset of N such that 0ϵ  I and IN⊆I. 

Let d be a two sided α derivation on N such that α (I) = I and α (xy) = α(x)α(y) for all x,yϵ I. 

(i) If d acts as a homomorphison on I, then d = 0. 

(ii) If d acts as an anti – homomorphison on I and α (0) = 0, then d = 0. 

Proof:  By  theorem 1 , we have d (x) = 0 for all xϵ I. 
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Then 0 = d (xn) = d(x) α (n) + x d (n) = x d (n), and so 

xmd (n) = 0 for all xϵ I, n,mϵ  N. 

By the primeness of N we have x = 0 or d (n) = 0 for all xϵ I, nϵ N. 

Since I is nonzero, we have d (n) = 0 for all nϵ  N.  

Theorem 2: Let N be a prime nearring, I a nonzero semi group ideal of N and d nonzero 

(α,1)-derivation of N such that α(xy) = α(x) α (y) for all x,yϵI. If d (x+y-x-y) =0 for all x,yϵ I, 

then (N,+) is abelian. 

Proof: Suppose that d (x+y-x-y) = 0 for all x,yϵ I. 

Then from lemma (5) we have  

d(z) (x+y-n-y) = 0 for all x,y,zϵ I. 

Since d≠0, it is clear that by lemma(4)  

x+y-x-y=0 for all x,yϵ I. 

Hence form by lemma (1) we have 

  (N,+) is abelian.  

Corallary 3:Let N be a prime  nearring, I a nonzero semigroup ideal of N and  d a nonzero 

(α,1)-derivation of N such that α(xy)=α(x)α(y) for all x,yϵ I. If d+d is additive on I, then 

(N,+) is abelian. 

Proof: Assume that d+d is an additive on I, then 

(d+d)(x+y) = (d+d)(x)+(d+d)(y) 

       = d(x)+d(x)+d(y)+d(y) for all x,yϵ I. 

On the other hand, 

(d+d)(x+y) = d(x+y)+d(x+y) 

        = d(x)+d(y)+d(x)+d(y) for all x,yϵ I. 

The above two expressions for (d+d)(x+) yield 

d(x)+d(y)=d(y)+d(x) for all x,yϵ  I,  

i.e. d(x+y-x-y)=0. 

Hence from theorem (2) we have (N,+) is abelian. 
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