Two-Sided α-derivations on Left Nearrings

Dr.D.Bharathi ${ }^{*}$ and K.Sreenivasulu ${ }^{\# 1}$

*Assoc.Professor, Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pardesh, India, Pin:517502.

E-mail: bharathikavali@yahoo.co.in
${ }^{\# 1}$ Research scholar, Department of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pardesh, India, Pin:517502.

E-mail: ksreenugkce@gmail.com

Abstract

: H.E.Bell and G.Mason[1] proved that if D is a derivation on left near ring N satisfying $\mathrm{D}(\mathrm{N}) \subseteq \mathrm{Z}$ or $[\mathrm{D}(\mathrm{x}), \mathrm{D}(\mathrm{y})]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$ then $(\mathrm{N},+)$ is abelian. In [2], Bell and kappe proved that if d is a derivation of semiprime ring R which is either an endomorphism or antiendomorphism then $\mathrm{d}=0$. Argafi genaralized this result for a semiprime near ring in [3]. In this paper, we prove that $(N,+)$ is abelian if $d(x+y-x-y)=0$ and if $d+d$ is additive on I.

Key words:

Near-ring, Derivation, semiprime ring, $\square, 1$)-derivation,(1; \square)-derivation, two-sided \square derivation

Introduction:

An additive map $\mathrm{d}: \mathrm{N} \rightarrow \mathrm{N}$ is a derivation if $\mathrm{d}(\mathrm{xy})=\mathrm{xd}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$ or equivalently that $d(x y)=d(x) y+x d(y)$ for all $x, y \in N$.

A set N together two binary operations ' + ' and '.' is called (left) nearring. If
(i) N is a group (not necessarily abelian) under addition.
(ii) Multiplication is associative (so N is a semigroup under multiplication)
(iii) Multiplication distributives over addition on the left for any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in N , it holds that $x .(y+z)=x . y+x . z$.

A Nearring N is said to be prime if $x N y=\{0\}$ for $n, y \in N$ implies $x=0$. A non-empty subset I of N will be called a semi group ideal if $I N \subseteq I$ and $N I \subseteq I$, if d is a derivation of a semigroup ring R which is either an endomorphism or anti-endomorphism, then $\mathrm{d}=0$.

An additive mapping $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is called a $(\alpha, \beta$)-derivation if there exist functions $\alpha, \beta: N \rightarrow N$ such that $d(x y)=f(x) \alpha(y)+\beta(x) f(y)$ for all $x, y \in N$. An additive mapping $d: N \rightarrow N$ is
called a two -sided α-derivation if d is an $(\alpha, 1)$-derivation as well as $(1, \alpha)$-derivation. For $\alpha=1$, a two-sided α-derivation.

Preliminaries:

Lemma 1: Let N be a prime nearring and I a nonzero semigroup ideal of N . If $\mathrm{u}+\mathrm{v}=\mathrm{v}+\mathrm{u}$ for all $u, v \in I$, then $(N,+)$ is abelian.

Proof: By the hypothesis, we have ux+uy=uy+ux for all $u \in I$ and $x, y \in N$
Then we get $u(x+y-x-y)=0$ for all $u \in I$ and $x, y \in N$.
It means that $I(x+y-x-y)=N I(x-y-x-y)=0$.
Since I is a nonzero semigroup ideal we have $x+y-x-y=0$ for all $x, y \in N$ by the primeness of N.

Thus ($\mathrm{N},+$) is abelian. \square
Lemma 2: Let N be a left nearring, d a ($\alpha, 1$)-derivation of N and I a multiplicative semigroup of N which contains 0 . If d acts as an anti-homomorphism on I and $\alpha(0)=0$,then $0 \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{I}$.

Proof: since $\mathrm{x} 0=0$ for all $\mathrm{x} \in \mathrm{I}$ and d acts as an anti-homomorphism on I it is clear that $0 \mathrm{~d}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{I}$.

Taking 0 x instead of x , one can obtain $\mathrm{d}(\mathrm{x}) \alpha(0)+0 \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{I}$.
Thus we have $0 \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{I}$. \square
Lemma 3: Let N be a nearring and be a multiplicative sub semigroup of N . If d is a twosided α-derivation of N such that $\alpha(\mathrm{xy})=\alpha(\mathrm{x}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$ then $(\mathrm{d}(\mathrm{x}) \alpha(\mathrm{y})+\mathrm{xd}(\mathrm{y})) \mathrm{n}=$ $d(x) \alpha(y) n+x d(y) n$ for all $n, x, y \in I$. Further-more, if $\alpha(I)=I$, then $(d(x) y+\alpha(x) d(y)) n=d(x) y n+$ $\alpha(x) d(y) n$ for all n, x.

Lemma 4: Let N be a prime nearring and I a nonzero semigroup ideal of N . Let d be a nonzero $(\alpha, 1)$-derivation on N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$. If $x \in N$ and $d(I) x=\{0\}$, then $\mathrm{x}=0$.

Proof: Assume that $\mathrm{d}(\mathrm{I}) \mathrm{x}=0$.
Then $d(u y) x=0$ for all $y \in N, u \in I$.
Hence $0=(d(u) \alpha(y)+u d(y)) x=u d(y) x$ for all $y \in N J, u \in I$
Since I is a nonzero semigroup ideal and d is non-zero, it is clear that $\mathrm{x}=0$ by the primeness of N. \square

Lemma 5: Let N be a prime nearring and I a non-zero semigroup ideal of N and d a nonzero $(\alpha, 1)$-derivation on N. If $d(x+y-x-y)=0$ for all $x, y \in I$, then $d(z)(x+y-x-y)=0$ for all $x, y, z \in I$.

Proof: Assume that $\mathrm{d}(\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$.
Let us take $y z$ and $x z$ instead of y and x, where $z \in I$ respectively.
Then

$$
\begin{aligned}
0 & =\mathrm{d}(\mathrm{z}(\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y})) \\
& =\alpha(\mathrm{z}) \mathrm{d}(\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y})+\mathrm{d}(\mathrm{z})(\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y}) \\
& =\mathrm{d}(\mathrm{z})(\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{I} .[
\end{aligned}
$$

Lemma 6: Let N be a nearring and I be a multiplicative sub semigroup of N . Let d be a ($\alpha, 1$)derivation of N such that $\alpha(\mathrm{xy})=\alpha(\mathrm{x}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$ and $\alpha(\mathrm{I})=\mathrm{I}$
(i) If d acts as a homomorphism on I, then

$$
\mathrm{xd}(\mathrm{y}) \mathrm{d}(\mathrm{y})=\mathrm{xyd}(\mathrm{y})=\mathrm{xd}(\mathrm{y}) \alpha(\mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{I} .
$$

(ii) If d acts as an anti-homomorphism on I, then

$$
x d(y) d(y)=x y d(y)=d(y) x \alpha(y) \text { for all } x, y \in I .
$$

Proof: (i) Let d acts as a homomorphism on I. Then
$D(y x)=d(y) \alpha(x)++y d(x)=d(y) d(x)$ for all $x, y \in I$
Substituting $x y$ for x in (1), we have
$d(y) \alpha(x y)+y d(x y)=d(y) d(x y)=d(x y) d(y)$ for all $x, y \in I$
By lemma (3), we have
$\mathrm{d}(\mathrm{y}) \mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{y}) \mathrm{d}(\mathrm{x}) \alpha(\mathrm{y})+\mathrm{d}(\mathrm{y}) \mathrm{xd}(\mathrm{y})=\mathrm{d}(\mathrm{yx}) \alpha(\mathrm{y})+\mathrm{d}(\mathrm{y}) \mathrm{xd}(\mathrm{y})$
using this relation in (2), we get
$x y d(y)=x d(y) d(y)$
Similarly, taking $x y$ instead of y in (1), we obtain
$\mathrm{d}(\mathrm{yx})=\mathrm{d}(\mathrm{xy}) \alpha(\mathrm{x})+\mathrm{xyd}(\mathrm{x})=\mathrm{d}(\mathrm{xy}) \mathrm{d}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
on the other hand
$\mathrm{d}(\mathrm{xy}) \mathrm{d}(\mathrm{x})=(\mathrm{d}(\mathrm{x}) \alpha(\mathrm{y})+\mathrm{xd}(\mathrm{y})) \mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha(\mathrm{y}) \mathrm{d}(\mathrm{x})+\mathrm{xd}(\mathrm{y}) \mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha(\mathrm{y}) \mathrm{d}(\mathrm{x})+\mathrm{xd}(\mathrm{yx})$
using this relation in (3), we get
$\mathrm{d}(\mathrm{xy}) \alpha(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y}) \alpha(\mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha(\mathrm{x}) \mathrm{d}(\mathrm{y})$
since $\alpha(\mathrm{I})=\mathrm{I}$ it is clear that $\mathrm{d}(\mathrm{x}) \operatorname{wd}(\mathrm{y})=\mathrm{d}(\mathrm{x}) \mathrm{w} \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{w} \in \mathrm{I}$
(ii) Since d acts as an anti-homomorphism on I, we have
$\mathrm{d}(\mathrm{yx})=\mathrm{d}(\mathrm{y}) \alpha(\mathrm{x})+\mathrm{yd}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
taking yx for y in (4), we get

$$
\begin{aligned}
\mathrm{d}(\mathrm{yx}) \alpha(\mathrm{x})+\mathrm{yxd}(\mathrm{x}) & =\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{yx}) \\
& =\mathrm{d}(\mathrm{x})(\mathrm{d}(\mathrm{y}) \alpha(\mathrm{X})+\mathrm{yd}(\mathrm{x})) \\
& =\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y}) \alpha(\mathrm{x})+\mathrm{d}(\mathrm{x}) \mathrm{yd}(\mathrm{x}) \\
& =\mathrm{d}(\mathrm{xy}) \alpha(\mathrm{x})+\mathrm{d}(\mathrm{x}) \mathrm{yd}(\mathrm{x}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{I}
\end{aligned}
$$

From this relation we get $\mathrm{d}(\mathrm{yx}) \alpha(\mathrm{x})=\mathrm{d}(\mathrm{xy}) \alpha(\mathrm{x})$.
Since $\alpha(I)=I$ we get
$\mathrm{d}(\mathrm{x}) \alpha(\mathrm{x}) \mathrm{y}=\mathrm{d}(\mathrm{x}) \mathrm{yd}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$.
Similarly, taking $y x$ instead of x in (4), one can prove the relation
$x d(y) d(y)=x y d(y)$.

Main results:

Theorem 1: Let N be a semiprime nearring and I be a subset of N such that $0 € I$ and $I N \subseteq I$. Let d be a two sided α-derivation on N such that $\alpha(\mathrm{I})=\mathrm{I}$ and $\alpha(\mathrm{xy})=\alpha(\mathrm{x}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
(i) If d acts as a homomorphism on I,then $d(I)=\{0\}$
(ii) If d acts as an anti-homomorphism on I and $\alpha(0)=0$, then $d(I)=\{0\}$

Proof: (i) Suppose that d acts as a homomorphism on I. By lemma(6), we have $\operatorname{xd}(\mathrm{y}) \mathrm{d}(\mathrm{y})=\mathrm{xd}(\mathrm{y}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
by multiplying left side of (5) with $d(z)$, where $z \in I$, and using the hypothesis that d acts as a homomorphism on I together with lemma(3), we obtain
$z d(y) x d(y)=0$ for all $x, y, z \in I$
Taking xn instead of x , where $\mathrm{n} \in \mathrm{N}$, we get
$z d(y) x n d(y)=0$ for all $x, y, z \in I$ and $n \in N$
In particular, $\mathrm{xd}(\mathrm{y}) \mathrm{xNd}(\mathrm{y})=\{0\}$.
By the semiprimeness of N we conclude $\mathrm{xd}(\mathrm{y})=0$.
Since $\alpha(I)=I$, it is clear that
$\alpha(\mathrm{x}) \mathrm{d}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
Substituting yn for y in (6), and right multiplying (6) by $\mathrm{d}(\mathrm{z}$), where ze I , we get $\alpha(\mathrm{x}) \operatorname{nd}(\mathrm{y}) \mathrm{d}(\mathrm{z})+\mathrm{d}(\mathrm{x}) \alpha(\mathrm{n}) \alpha(\mathrm{y}) \mathrm{d}(\mathrm{z})=0$.
Since the second summand is zero by (6) we get
$0=\alpha(\mathrm{x}) \operatorname{nd}(\mathrm{y}) \mathrm{d}(\mathrm{z})=\alpha(\mathrm{x}) \operatorname{nd}(\mathrm{yz})=\alpha(\mathrm{x}) \operatorname{nd}(\mathrm{y}) \alpha(\mathrm{z})+\alpha(\mathrm{x}) \operatorname{nyd}(\mathrm{z})$,
that is $\operatorname{xnyd}(\mathrm{z})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{I}, \mathrm{n} \in \mathrm{N}$.
Since N is semiprime, we have
$y d(z)=0$ for all $y, z \in I$

Combining (6) and (7) shows that
$d(y z)=0$ for all $y, z \in I$.
In particular, $d(x n x)=0$ for all $x \in I, n \in n$; and since d acts as a homomorphism on I, we have $0=\mathrm{d}(\mathrm{xn}) \mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{nd}(\mathrm{x})+\alpha(\mathrm{x}) \mathrm{d}(\mathrm{n}) \mathrm{d}(\mathrm{x})$
Since $\alpha(I)=I$, the second summand is zero by (7) we have

$$
d(x)=0 \text { for all } x \in I
$$

(ii) Now assume that d acts as an anti-homomorphism on I.

Note that $0 \mathrm{a}=0$ for all $\mathrm{a} \in \mathrm{I}$ by lemma (2)
According to lemma (6), we have
$x y d(y)=x d(y) d(y)$ for all $x, y \in I$
$d(y) \alpha(y) x=x d(y) d(y)$ for all $x, y \in I$
Replacing x by $x d(y)$ in (8) and using lemma (6), we get

$$
\begin{align*}
\operatorname{xd}(\mathrm{y}) \mathrm{yd}(\mathrm{y}) & =\mathrm{d}(\mathrm{Y}) \mathrm{xd}\left(\mathrm{Y}^{2}\right) \\
& =\mathrm{d}(\mathrm{y}) \mathrm{x}(\mathrm{~d}(\mathrm{y}) \alpha(\mathrm{y})+\mathrm{yd}(\mathrm{y})) \\
& =\mathrm{d}(\mathrm{y}) \mathrm{xd}(\mathrm{y}) \alpha(\mathrm{y})+\mathrm{d}(\mathrm{y}) \mathrm{yyd}(\mathrm{y}) \tag{10}
\end{align*}
$$

Hence $x d(y) y d(y)=d(y) x d(y) \alpha(y)+d(y) x y d(y)$
Substituting $x y$ for n in (8) we have
$X y^{2} d(y)=d(y) x y d(y)$ for all $x, y \in I$
Left- multiplying (8) by α (y), we obtain
$\alpha(\mathrm{y}) \mathrm{xyd}(\mathrm{y})=\alpha(\mathrm{y}) \mathrm{d}(\mathrm{y}) \mathrm{nd}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$
Replacing x by y in (8) we get
$y^{2} d(y)=d(y) y d(y)$
and right-multiplying this relation by n, we have
$Y^{2} d(y) x=d(y) y d(y) x$ for all $x, y \in I$
Using (11), (12) and (13) in (10) we obtains
$\mathrm{x} y \mathrm{~d}(\mathrm{y}) \alpha(\mathrm{y})=0$.
In particular, y n y $\mathrm{d}(\mathrm{y}) \alpha(\mathrm{y})=0$, Where $\mathrm{n} \in \mathrm{N}$.
Hence yd (y) $\alpha(\mathrm{y}) \mathrm{Nyd}(\mathrm{y}) \alpha(\mathrm{y})=\{0\}$.
By the semiprimeness
Nyd (y) $\alpha(\mathrm{y})=\mathrm{o}$ for all $\mathrm{n}, \mathrm{y} \in \mathrm{I}$
According to (12), we get α (y) d (y) nd (y) $=0$
Using this relation in (9), we have
$D(y) \alpha(y) x \alpha(y)=0$ for all $x, y \in I$

Replacing n by x n (y) in 15 , we have
$\mathrm{D}(\mathrm{y}) \alpha(\mathrm{y}) \mathrm{xd}(\mathrm{y}) \alpha(\mathrm{y})=\mathrm{d}(\mathrm{y}) \alpha(\mathrm{y}) \mathrm{xnd}(\mathrm{y}) \alpha(\mathrm{y}) \mathrm{x}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}, \mathrm{n} \in \mathrm{N}$.
Hence $D(y) \alpha(y) x=0$, for all $x, y \in I$
Using (16) in(9), we obtain that

$$
\mathrm{d}(\mathrm{y}) \mathrm{xd}(\mathrm{y})=0,
$$

and so we have
$\mathrm{d}(\mathrm{y}) \mathrm{x} \mathrm{nd}(\mathrm{y}) \mathrm{x}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}, \mathrm{n} \in \mathrm{N}$.
Hence $x d(y)=0$ for all $x, y \in I$
Therefore $\mathrm{xd}(\mathrm{z}) \mathrm{d}(\mathrm{yn}) \mathrm{x}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{I}, \mathrm{n} \in \mathrm{N}$.
Thus $0=x d(z)(d(y) n+\alpha(y) d(n)) x=x d(z) d(y) \alpha(y) d(n) x$ for all $x, y, z \in I, n \in N$.
Since $\alpha(I)=I$ the second summand is zero by (17).
Hence $x d(z) d(y) N x=\{0\}$ and so
$x d(z) d(y) N x d(z) d(y)=\{0\}$.By the semi primeness of N we get
$0=x d(z) d(y)=x d(y z)$.
Therefore $0=x d(y) z+x \alpha(y) d(z)=x \alpha(y) d(z)$.
In particular $0=\alpha(y) d(z) n \alpha(y) d(z)$.
Hence $0=\alpha(y) d(z)$.
Recalling (17), we now have $0=\mathrm{d}$ (xy) for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$.
So $d(x x n)=0$ for all $x \in I, n \in N$.
Thus

$$
\begin{aligned}
0 & =d(x n) d(x)=(d(x) n+\alpha(x) d(n)) d(x) n d(x)+\alpha(x) d(n) d(x) \\
& =d(x) n d(x)+\alpha(x) d(x n) .
\end{aligned}
$$

Since the second summand is zero, we get $d(x) n d(x)=0$.
Therefore $\mathrm{d}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{I}$. \square
Corollary 1: Let N be a semi prime nearring and d a two sided $\alpha-$ derivation of N such that α is onto and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in N$.
(i) If d acts as a homomorphison on N , then $\mathrm{d}=0$
(ii) If d acts as an anti homomorphison on N such that $\alpha(0)=0$, then $\mathrm{d}=0$

Corollary 2: Let N be a prime nearring and I a nonzero subset of N such that $0 \in I$ and $I N \subseteq I$.
Let d be a two sided α derivation on N such that $\alpha(\mathrm{I})=\mathrm{I}$ and $\alpha(\mathrm{xy})=\alpha(\mathrm{x}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$.
(i) If d acts as a homomorphison on I , then $\mathrm{d}=0$.
(ii) If d acts as an anti - homomorphison on I and $\alpha(0)=0$, then $\mathrm{d}=0$.

Proof: By theorem 1, we have $\mathrm{d}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{I}$.

Then $0=\mathrm{d}(\mathrm{xn})=\mathrm{d}(\mathrm{x}) \alpha(\mathrm{n})+\mathrm{xd}(\mathrm{n})=\mathrm{xd}(\mathrm{n})$, and so xmd (n) $=0$ for all $x \in I, n, m \in N$.

By the primeness of N we have $x=0$ or $d(n)=0$ for all $x \in I, n \in N$.
Since I is nonzero, we have $\mathrm{d}(\mathrm{n})=0$ for all $\mathrm{n} \in \mathrm{N} . \square$
Theorem 2: Let N be a prime nearring, I a nonzero semi group ideal of N and d nonzero $(\alpha, 1)$-derivation of N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$. If $d(x+y-x-y)=0$ for all $x, y \in I$, then $(\mathrm{N},+)$ is abelian.
Proof: Suppose that $d(x+y-x-y)=0$ for all $x, y \in I$.
Then from lemma (5) we have
$d(z)(x+y-n-y)=0$ for all $x, y, z \in I$.
Since $\mathrm{d} \neq 0$, it is clear that by lemma(4)
$x+y-x-y=0$ for all $x, y \in I$.
Hence form by lemma (1) we have

$$
(\mathrm{N},+) \text { is abelian. } \square
$$

Corallary 3:Let N be a prime nearring, I a nonzero semigroup ideal of N and d a nonzero $(\alpha, 1)$-derivation of N such that $\alpha(\mathrm{xy})=\alpha(\mathrm{x}) \alpha(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$. If $\mathrm{d}+\mathrm{d}$ is additive on I , then $(\mathrm{N},+$) is abelian.

Proof: Assume that $\mathrm{d}+\mathrm{d}$ is an additive on I, then

$$
\begin{aligned}
(\mathrm{d}+\mathrm{d})(\mathrm{x}+\mathrm{y}) & =(\mathrm{d}+\mathrm{d})(\mathrm{x})+(\mathrm{d}+\mathrm{d})(\mathrm{y}) \\
& =\mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{I} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(d+d)(x+y) & =d(x+y)+d(x+y) \\
& =d(x)+d(y)+d(x)+d(y) \text { for all } x, y \in I .
\end{aligned}
$$

The above two expressions for $(\mathrm{d}+\mathrm{d})(\mathrm{x}+$) yield

$$
d(x)+d(y)=d(y)+d(x) \text { for all } x, y \in I,
$$

i.e. $d(x+y-x-y)=0$.

Hence from theorem (2) we have ($\mathrm{N},+$) is abelian \square

References:

1.Bell H. E. and Mason G., "On derivations in near-rings," in: Near-Rings and Near-Fields,

International Journal of Scientific \& Engineering Research, Volume 5, Issue 2, February-2014

North-Holland, Amsterdam (1987).
2. Bell H. E. and Kappe L. C., "Rings in which derivations satisfy certain algebraic conditions," Acta Math. Hungar., 53, No.3-4, 339-346 (1989).
3. Argafic N., "On prime and semiprime near-rings with derivations," Internat. J. Math. Math. Sci., 20, No.4, 737-740 (1997).

